- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Luo, Gaoxiang (2)
-
Burns, John Lee (1)
-
Chakraborty, Sunandan (1)
-
Farhadloo, Majid (1)
-
Gichoya, Judy Wawira (1)
-
Leontovich, Alexey (1)
-
Li, Yan (1)
-
Markovic, Svetomir (1)
-
Mathias, Garric (1)
-
Maus, Rachel L. (1)
-
Mittal, Vijay (1)
-
Molnar, Carl (1)
-
Moore, Raymond (1)
-
Peng, Le (1)
-
Price, Brandon (1)
-
Purkayastha, Saptarshi (1)
-
Sagane, Akshay (1)
-
Shekhar, Shashi (1)
-
Tignanelli, Christopher (1)
-
Vanschaik, Jack (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Purpose Prior studies show convolutional neural networks predicting self-reported race using x-rays of chest, hand and spine, chest computed tomography, and mammogram. We seek an understanding of the mechanism that reveals race within x-ray images, investigating the possibility that race is not predicted using the physical structure in x-ray images but is embedded in the grayscale pixel intensities. Approach Retrospective full year 2021, 298,827 AP/PA chest x-ray images from 3 academic health centers across the United States and MIMIC-CXR, labeled by self-reported race, were used in this study. The image structure is removed by summing the number of each grayscale value and scaling to percent per image (PPI). The resulting data are tested using multivariate analysis of variance (MANOVA) with Bonferroni multiple-comparison adjustment and class-balanced MANOVA. Machine learning (ML) feed-forward networks (FFN) and decision trees were built to predict race (binary Black or White and binary Black or other) using only grayscale value counts. Stratified analysis by body mass index, age, sex, gender, patient type, make/model of scanner, exposure, and kilovoltage peak setting was run to study the impact of these factors on race prediction following the same methodology. Results MANOVA rejects the null hypothesis that classes are the same with 95% confidence (F 7.38, P < 0.0001) and balanced MANOVA (F 2.02, P < 0.0001). The best FFN performance is limited [area under the receiver operating characteristic (AUROC) of 69.18%]. Gradient boosted trees predict self-reported race using grayscale PPI (AUROC 77.24%). Conclusions Within chest x-rays, pixel intensity value counts alone are statistically significant indicators and enough for ML classification tasks of patient self-reported race.more » « less
-
Farhadloo, Majid; Molnar, Carl; Luo, Gaoxiang; Li, Yan; Shekhar, Shashi; Maus, Rachel L.; Markovic, Svetomir; Leontovich, Alexey; Moore, Raymond (, In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining)
An official website of the United States government
