skip to main content


Search for: All records

Creators/Authors contains: "Luo, Gaoxiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Purpose Prior studies show convolutional neural networks predicting self-reported race using x-rays of chest, hand and spine, chest computed tomography, and mammogram. We seek an understanding of the mechanism that reveals race within x-ray images, investigating the possibility that race is not predicted using the physical structure in x-ray images but is embedded in the grayscale pixel intensities. Approach Retrospective full year 2021, 298,827 AP/PA chest x-ray images from 3 academic health centers across the United States and MIMIC-CXR, labeled by self-reported race, were used in this study. The image structure is removed by summing the number of each grayscale value and scaling to percent per image (PPI). The resulting data are tested using multivariate analysis of variance (MANOVA) with Bonferroni multiple-comparison adjustment and class-balanced MANOVA. Machine learning (ML) feed-forward networks (FFN) and decision trees were built to predict race (binary Black or White and binary Black or other) using only grayscale value counts. Stratified analysis by body mass index, age, sex, gender, patient type, make/model of scanner, exposure, and kilovoltage peak setting was run to study the impact of these factors on race prediction following the same methodology. Results MANOVA rejects the null hypothesis that classes are the same with 95% confidence (F 7.38, P < 0.0001) and balanced MANOVA (F 2.02, P < 0.0001). The best FFN performance is limited [area under the receiver operating characteristic (AUROC) of 69.18%]. Gradient boosted trees predict self-reported race using grayscale PPI (AUROC 77.24%). Conclusions Within chest x-rays, pixel intensity value counts alone are statistically significant indicators and enough for ML classification tasks of patient self-reported race. 
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  2. Abstract Objective

    Federated learning (FL) allows multiple distributed data holders to collaboratively learn a shared model without data sharing. However, individual health system data are heterogeneous. “Personalized” FL variations have been developed to counter data heterogeneity, but few have been evaluated using real-world healthcare data. The purpose of this study is to investigate the performance of a single-site versus a 3-client federated model using a previously described Coronavirus Disease 19 (COVID-19) diagnostic model. Additionally, to investigate the effect of system heterogeneity, we evaluate the performance of 4 FL variations.

    Materials and methods

    We leverage a FL healthcare collaborative including data from 5 international healthcare systems (US and Europe) encompassing 42 hospitals. We implemented a COVID-19 computer vision diagnosis system using the Federated Averaging (FedAvg) algorithm implemented on Clara Train SDK 4.0. To study the effect of data heterogeneity, training data was pooled from 3 systems locally and federation was simulated. We compared a centralized/pooled model, versus FedAvg, and 3 personalized FL variations (FedProx, FedBN, and FedAMP).

    Results

    We observed comparable model performance with respect to internal validation (local model: AUROC 0.94 vs FedAvg: 0.95, P = .5) and improved model generalizability with the FedAvg model (P < .05). When investigating the effects of model heterogeneity, we observed poor performance with FedAvg on internal validation as compared to personalized FL algorithms. FedAvg did have improved generalizability compared to personalized FL algorithms. On average, FedBN had the best rank performance on internal and external validation.

    Conclusion

    FedAvg can significantly improve the generalization of the model compared to other personalization FL algorithms; however, at the cost of poor internal validity. Personalized FL may offer an opportunity to develop both internal and externally validated algorithms.

     
    more » « less